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a b s t r a c t s

The accurate mapping of housing rent is crucial to the understanding of residential dynamics. In this
study, we proposed the use of online rental listings as a new reliable data source for mapping housing
rent. With the collected individual rental information from an online platform, we attempted to produce
the fine-scale spatial pattern of housing rent in the metropolitan area of Guangzhou, China, at the
neighborhood committee (NC) level. This involves the task of estimating the housing rent for areas with
no observation data of housing rent. To this end, we evaluated six numeric prediction methods of ma-
chine learning. We further enhanced their performance through ensemble learning, an approach which
can form new classifiers with even better performance than any of the individual constituent classifiers.
We implemented ensemble learning through ways of bagging and stacking, and selected the most ac-
curate ensemble classifier to produce the spatial pattern of housing rent at the NC-level. In the resulting
housing rent pattern, we identified a distance decay relationship between the housing rent and the
distance from the city center. The data sources and the ensemble learning platform in this application of
housing rent mapping are generally open access. Therefore, the proposed approach in this study can
provide useful hints for housing rent mapping in other geographical areas. Our mapping results can also
be integrated with additional information to support the studies of urban residential problems in China.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Rent is always a crucial variable to explain urban phenomena in
either a theoretical or an empirical manner. In urban economic
theory, the core concept of bid rent is used to represent how much
money the competing land users are willing to pay for a specific
land unit with a certain distance to the central business district
(CBD) (Ahlfeldt, 2011; Y. M.; Chen, Li, Wang, & Liu, 2012). The bid
rent in this theory can also be viewed as the trade-off between
accessibility and commuting cost. In the realistic real estate mar-
kets, however, rent is more frequent to be considered as the indi-
cator of housing cost for residents, or in turn the economic return
for residential investors. In the famous Smith's rent gap theory to
Planning, Sun Yat-sen Uni-
hina.
explain the process of gentrification (Lopez-Morales, 2011), two
different types of rents are defined, i.e. the current rent of a prop-
erty and its expected rent after rehabilitation. The disparity be-
tween the current rent and the expected rent is regarded as the
primary motivation of local investors to renovate the properties in
the declining urban areas. Such local actions then collectively form
the process of gentrification at the macro scale.

The accuratemapping of housing rent is essential to many urban
research. Firstly, the mapping of housing rent and related variables,
such as housing price and land price, characterizes the spatial
distributions of real property values, and is fundamental to the
monitoring and evaluation of local residential markets. By using
data of this kind the price-to-rent ratio, for example, can be
computed for detecting the inflation of housing markets and its
spatial distributions (Frappa & M�esonnier, 2010). Secondly, the
spatial delineation of housing rent is enables the analysis of how
structural/neighborhood characteristics affect real property values
(Ahlfeldt, 2011), and in turn explain the determinants of renting
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households' residential behaviors (W. Wu, Zhang, & Dong, 2013).
The knowledge obtained from this kind of research is particularly
useful for the design of new urban development (Waltert &
Schl€apfer, 2010) as well as the renewal of declining areas in the
city (Lopez-Morales, 2011). Thirdly, the housing rent maps explic-
itly express the spatial variations of housing cost, a variable of
which is important for research of households' housing/non-
housing consumptions and associated policy makings towards
the low-income group. As reported by Davis and Ortalo-Magn�e
(2011), for the renting households in the U.S., the share of hous-
ing expenditure to total income is remarkably stable across regions
and over time, but varies significantly among different income
groups. For the low-income group, besides the private rental mar-
ket (Kemp, 2011), governments in many countries have also
launched a variety of projects to supply affordable housing, such as
the public rental housing (Delang & Lung, 2010). In this respect, a
clear spatial pattern of housing rent can provide valuable infor-
mation of private market influences, and also crucial references for
determining the residential subsidies at a reasonable level.

Despite the importance discussed above, the accurate mapping
of housing rent patterns at the fine-scale still remains challenging.
This is primarily because the contemporary mainstream data
sources of housing rent are aggregate data of official statistics,
population census and surveys, which fail to provide necessary
micro-level attributes for the fine-scale mapping of housing rent.
Rondinelli and Veronese (2011) mentioned the scantiness of
housing rent data for empirical analysis in Europe. In their research,
they assembled the rent data of Italy from multiple sources,
including national statistics, household surveys and price surveys
by the national associations of estate agents. Partridge, Rickman,
Ali, and Olfert (2010) acquired the rental information from the
population census to assess the impacts of proximity to urban
consumer amenities and production on housing costs growth.
Ahlfeldt (2011) made use of the residential property transaction
samples in Berlin to establish a hedonic model with structural and
neighborhood characteristics of properties. Lopez-Morales (2011)
discussed the gentrification led by social dispossession in San-
tiago de Chile by using the housing data acquired from Santiago
Property Market Bulletin. Yi and Huang (2014) also stressed the
lack of housing data in China. With the latest population census
data, they revealed the housing inequality across population groups
and different provinces.

Overall, these data sources have two major limitations. Firstly,
most often the productions of these kinds of data are costly and
labor-intensive, and their update cycles could be as long as five or
more years (e.g. population census). Therefore, it would be rather
difficult to obtain the timely spatial dynamics of housing rent/price
by solely using these data sources. Secondly, the official statistics
are usually aggregate data (Rondinelli & Veronese, 2011) in which
fine-scale attributes are lacking. To overcome these limitations, we
proposed the use of online rental listings as a new reliable source of
housing data. The advance of the Internet and related technology
has brought more and more convenience for making real property
transactions or rental housing (Hogan & Berry, 2011; Rae, 2015).
Such online services not only smooth the procedures of housing
consumption, but also can offer a wealth of fine-scale housing in-
formation for research. For example, Hogan and Berry (2011)
assessed the racial discrimination in the online rental housing
market of Toronto. Hanson and Hawley (2011) also adopted a
similar Internet-based approach to examine the discrimination is-
sues in the housing market of U.S. cities. Rae (2015) explored the
geography of local housing submarket through a dataset of online
housing search in U.K. However, the application of online housing
information for geographical research is still in its infancy. Recently
Batty et al. (2012) included the modeling of housing markets in the
proposed seven future research areas of smart cities based on the
new forms of data sources (e.g. Internet-based data). Arribas-Bel
(2014) also emphasized the utility of various kinds of online indi-
vidual data for the better understanding of cities.

In this study, we present the mapping of the fine-scale housing
rent in the metropolitan area of Guangzhou by using the online
rental listings collected from Anjuke (http://guangzhou.anjuke.
com/), a domestic real estate platform in China. China is now
experiencing fast urbanization (Liu et al., 2010, 2014) and radical
changes in housing consumption (Yi & Huang, 2014). According to
the recent national statistics, housing cost, which can be measured
by or transformed from housing rent, becomes the second largest
sector (22.5%) of the urban households' expenditure (China
Statistical Bureau, 2015). To obtain a clear spatial pattern of hous-
ing rent in the metropolitan area, we carried out the analysis at the
neighborhood committee (NC) level, which is the most basic level
of administrative divisions in Chinese cities (A brief introduction of
the administrative divisions is provided in Section 2). It is expected
that our study can be helpful to support many other studies related
to urban residential dynamics in China, such as housing afford-
ability (J. Chen, Hao, & Stephens, 2010), urban poverty (He, Wu,
Webster, & Liu, 2010) and residential segregation (Z. Li & Wu,
2008).

Our application of housing rent mapping also involves the
estimation of housing rent for areas with no observation data of
housing rent. The estimation of housing price/rent is not a new
problem, and a variety of methods has been proposed in previous
literature relevant to this topic. Traditionally, the hedonic price
regressionmodels are often used to estimate the housing price/rent
(Ahlfeldt, 2011). Recently, Waltert and Schl€apfer (2010) reviewed
the hedonic price literature (46 studies) and reported the effects of
landscape amenities on housing price. However, the spatial effects,
which are referred to as the spatial autocorrelation and spatial
heterogeneity, may not be well addressed by the traditional he-
donic regression models (Dub�e & Legros, 2014). The family of
spatial econometric models explicitly account these effects and
hence achieves better accuracy in the estimation of housing price/
rent (Anselin & Le Gallo, 2006). The main types of spatial econo-
metric models include the spatial lag model and the spatial
autoregressive error model (Osland, 2010). Thesemodels have been
increasingly applied in the empirical housing research during the
past two decades. For example, Yu, Wei, and Wu (2007) employed
geographically weighted regression (GWR) model to examine the
spatial effects for the modeling of housing prices in Milwaukee.
Bitter, Mulligan, and Dall’erba (2007) also applied GWR in their
empirical research to deal with the spatial heterogeneity in housing
markets. Dub�e and Legros (2014) addressed the latent bias in the
spatial autoregressive model when housing data is pooled over
time. Besides these models, the method of spatial interpolation is
also capable of estimating housing price/rent, although in this
method only the factor of geographical distance is taken into ac-
count (S. Hu, Cheng, Wang, & Xie, 2012).

From the perspectives of accurate prediction, however, alter-
native methods from the field of machine learning present two
appealing advantages over traditional statistical methods. Firstly,
statistical methods usually require assumptions of the distribution
of data, whereas machine learning methods are more flexible with
no requirement of data distribution; secondly, machine learning
methods can capture the higher-order interactions between data
and hence have better prediction ability than traditional statistical
models (Jerez et al., 2010). Moreover, the individual machine
learning methods/classifiers can be further combined to form a
new classifier that has even better performance than any of the
individual constituent method/classifier. This is the so-called
ensemble learning approach (X. Li, Liu, & Yu, 2014; Zhou, 2012).

http://guangzhou.anjuke.com/
http://guangzhou.anjuke.com/
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Ensemble learning has been successfully applied in many fields,
including real estate appraisal (Graczyk, Lasota, Trawi�nski, &
Trawi�nski, 2010), but remains relatively new to human geogra-
phy. Nevertheless, it is worth exploring the ability of ensemble
learning to solve geographic problems. Therefore, we adopted the
ensemble learning approach to develop the housing rent prediction
model. There are several types of ensemble learning, such as
bagging and stacking (Graczyk et al., 2010). As a result, we carried
out multiple experiments to compare the outcomes of bagging and
stacking, and chose the most accurate ensemble classifier for the
housing rent prediction (See Section 3 for more details). Finally, we
discussed the implications obtained from the results of housing
rent mapping.

2. Study area and data

The study area is located in Guangzhou, China (Fig. 1).
Guangzhou is the third biggest city in China, with a population of
more than 13 million and an urbanization rate of 86% in 2014. For a
better understanding of our analysis, it is worth mentioning the
administrative divisions of Guangzhou, which consist of four levels.
The top level is the whole city as a unit of China's prefectural-level
Fig. 1. Study area: Guangzhou City (23�080N, 113�160E). The rank of residential zones ranges
divisions. The second level is the county-level divisions, which re-
fers to the 11 districts in Guangzhou (Fig. 1). The third one is the
township-level divisions, i.e. the sub-district units or ‘Jiedaos’ in
urban areas or towns in the urban fringe and the rural areas. The
forth level includes themost basic units of administrative divisions:
the neighborhood committees (NC) in urban areas and the village
committees (VC) in rural areas. This is the level in which we
mapped the housing rent pattern. Fig. 2 takes Tianhe District as an
example to illustrate the hierarchy of administrative divisions
below the township-level. Moreover, the Guangzhou Land
Resource and House Management Bureau has ranked the residen-
tial zones in 12 classes, with 1 indicating the highest class and 12
the lowest. Here we only included NCs within the residential zones
from class 1 to class 9 and dropped the rest of them, because the
residential zones belowclass 9 are basically in the rural areas where
the rental market is distinctive from the urban areas. As a result, a
total of 1996 NCs in the urban areas were selected for subsequent
analysis.

We derived the observation data of housing rent from Anjuke, a
popular online platform that publishes real estate information of
homes/apartments for sale or rental. Anjuke has covered 67 cities in
China and is already an influential online real estate agency in
from 1 to 9, with 1 being the highest class residential zone and 9 being the lowest one.



Fig. 2. Tianhe District as an example to illustrate the hierarchy of administrative divisions in Guangzhou. The bold red lines are the boundaries of county-level divisions (i.e. the
districts). The bold grey lines are the boundaries of township-level divisions (i.e. ‘Jiedao’ in the city). The light grey lines are the boundaries of the lowest level divisions, the
neighborhood committees. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Guangzhou. We created a program of web crawlers to collect the
rental listings in 2015, and organized them as records with the
attributes of ‘identity number’, ‘title’, ‘floor area’, ‘number of rooms’,
‘rent’, ‘residential quarter name’ and so on. We then added a new
attribute of ‘unit rent’ into the records (i.e. the ‘rent’ divided by the
‘floor area’) so that it would be convenient to exclude the false
records, such as those with an unreasonable unit rent of over 1000
yuan/m2. There were 327,767 records in total after the removal of
false records. The calculated unit rents indeed is the standardized
housing rents and also an indicator to reflect the individual dif-
ferences among apartments. This is quite straightforward: if two
apartments have the same size, normally the one has higher (unit)
rent would in turn offer better living conditions (e.g. good views or
better layouts), and vice versa; however, if their sizes are different,
their rents cannot be compared directly until they are transformed
into unit rents (i.e. after standardization), and again the one has
higher unit rent would in turn offer better living conditions
(perhaps more rooms, desirable orientation or better decoration)
than the other, and vice versa. In this sense, we believe that the pre-
processing of converting the housing rent into unit rents is
reasonable for the collected records. However, we identified one
important omission in the collected records, i.e. the apartments'
precise locations. Moreover, the room number or building number
of the apartments are also unknown. The only useful attribute for
identifying the apartments' locations is ‘residential quarter name’.
Thus, we designed another program to search the locations of all
the residential quarters through Baidu Maps (http://lbsyun.baidu.
com/index.php?title¼webapi/guide/webservice-placeapi).

The above procedures of location determination would raise
another two side-effects. The first one is that records of rental
apartments in the same residential quarter, although quite likely to
be in the separate buildings, will point to the same locations. As a
result, we merged these records into a new single one according to
the ‘residential quarter name’, and assigned the average unit rent of
the original records to their corresponding residential quarters.
This resulted in 3522 residential quarter records with observed
locations and unit rents (Fig. 3(a) and (b)). We also compared the
resulted mean unit rents of five representative residential quarters
(Fig. 3(c)) with those acquired from another two important online
real estate agencies in Guangzhou, including Soufun and Centaline
Property Agency (CPAL). As shown by Table 1, no substantial dif-
ferences are observed among these platforms, indicating that our
data from Anjuke are reliable.

The second side effect is the mismatch between the residential
quarters as areal objects in the real-world and their simplified
representation as individual points in our analysis. To alleviate the
uncertainty caused by this problem, we aggregated the residential
quarter records into the NC-level according to their locations, and
used their mean unit rent to represent the mean unit rent of the
NCs (Fig. 3(b) and (c)). Even so, still 49% of the selected NCs' mean
unit rent are unknown (i.e. no records contained) (Fig. 3(c)), and
indeed they will be estimated with the available observed mean
unit rent and a set of spatial variables, including the nighttime
lights.

The nighttime lights datawe used is the Visible Infrared Imaging
Radiometer Suite (VIIRS) Day/Night Band (DNB) monthly cloud free
composites from NOAA/NGDC (http://www.ngdc.noaa.gov/eog/
viirs/download_monthly.html). Compared with the conventional
nighttime lights data of DMSP-OLS, the VIIRS data has a finer spatial
resolution (roughly 500 m) and solves the problem of saturation in
the densely urbanized areas. However, the monthly composites are
not filtered to exclude lights from aurora, fires and other temporal
lights. Meanwhile, these composites also contain background
noises. To reduce the influences caused by these uncertainties, we
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Fig. 3. The acquired housing rent data from Anjuke. (a) The locations of the acquired residential quarters; (b) Multiple residential quarters (with their unit rent on the top) exist
within a single NC; (c) NC with their mean unit rents calculated based on the observations (i.e. the acquired Anjuke data), or labeled ‘Unknown’ if observations are missing.

Table 1
Comparison of mean unit rent and its standard deviation of five representative residential quarters (yuan/m2) collected from different real-estate online platforms.

Central parkview Clifford estates
(Yiyunju)

Jinyayuan Baoshengyuan Agile property
(Jincheng)

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

Anjuke 97.24 21.93 28.33 2.88 42.21 5.06 56.50 11.04 21.16 2.83
Soufun 96.46 18.96 27.62 3.75 44.75 7.36 56.72 7.15 20.36 2.97
CPAL 97.33 15.05 25.60 3.95 46.66 5.87 56.32 8.43 20.65 4.06

The locations of these residential quarters are shown in Fig. 3(c). Std.¼ standard deviation; CPAL¼ Centaline Property Agency Limited; Anjuke: http://guangzhou.anjuke.com/
; Soufun: http://gz.fang.com/; CPAL: http://gz.centanet.com/rental/gz/.
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first overlapped the 12 scenes of monthly composites from January
to December, 2015, and generated a new image in which the me-
dian values of the overlapping images were retrieved and assigned
to each pixel. Additionally, pixels with negative values were
regarded as background noises and excluded from the median
image. The third step of data processing is the removal of outlier
pixels. We adopt the method similar to that in Shi et al. (2014),
which assumes that the lights in the core of the city should be the
highest, while pixels exceeding that are considered as the outliers.

Fig. 4 demonstrates the extent of the city core, in which the
highest pixel value is considered as the threshold for removing the
outliers. By traversing the light values in the city core, we identified
the max value of 57.59 in the median image. The outliers, which are
defined as the pixels with the values exceeding 57.59, can then be
easily detected by segmenting the image using this value. As shown
by Fig. 4 (the white boxes), these outlier pixels primarily exist in
two exurban areas, i.e. the Baiyun International Airport (19 outlier
pixels) and the Nansha Xingang Terminal (27 outlier pixels). This is
consistent with the findings in other applications of VIIRS image,
which report the observed extremely high pixel values in the huge
urban objects, such as airport and sea port (Guo, Lu, Wu, & Zhang,
2015; Ma, Zhou, Pei, Haynie, & Fan, 2014). By using this threshold
method, we identified and removed a total of 49 outlier pixels.
Because the outlier pixels in the Nansha Xingang Terminal are
outside of the metropolitan area (Fig. 1), the actual number of
outlier pixels is 22, a small proportion of pixels in the whole image
(22/11681 z 0.19%). For each NC, the mean nighttime lights were
calculated so as to generate a variable comparable to the observed
mean unit rent in the NC-level. Fig. 4(b) and (c) show the correla-
tions between the mean nighttime lights (before and after outlier
removal, respectively) and the observed mean unit rent. It is
evident that the correlation is moderately improved after the
removal of outliers while the other observations maintaining
unchanged.

Besides the nighttime lights, we also prepared an additional set
of spatial variables to further enhance the performance of our

http://guangzhou.anjuke.com/
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Fig. 4. (a) The spatial distributions of the outlier pixels (in red) in the nighttime light image. The images in the left column are captured from Google Earth (2015/9/17-2015/12/19).
(b) and (c) are the correlations between the mean nighttime lights (before and after outlier removal, respectively) and the mean unit rent. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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model. These variables were selected according to the findings of
previous residential research. Wu et al. (2013) identified several
important residential determinants, including the environmental
conditions, traffic systems, job opportunities, education and health
care. In our work, we used the NC-level mean Normalized Differ-
ence Vegetation Index (NDVI), which was derived from the Landsat
image (122/044; 2015.10.08), to represent the influence of envi-
ronmental conditions (ENDVI) on housing rent. The other variables
were generated by using the POIs data. A POI is a point location
with the attributes of its name, address and category. Thus, the data
set of POIs can provide useful socioeconomic information for
important locations. We chose six categories of POIs data, including
education (e.g. elementary schools, middle schools or high schools),
higher education (e.g. universities), enterprises, commercial
buildings, hospitals and metro stations. Based on the POIs data, we
created features to represent the supplies of facilities/services and
potential amenities to the neighboring residential quarters. We
followed the approach adopted by Hu, Yang, Li, and Gong (2016), in
which the mean kernel densities of POIs is used as the features of
parcel objects (polygons) for land-use classification. The residential
analysis conducted by Wu et al. (2013) also employs the average
density at the sub-district (‘Jiedao’) level to represent the facility
abundance, such as school and public transportation. Therefore, we
generated the kernel density for each of the selected POIs types,
and aggregated into the NC-level by calculating their mean values.
In the calculation of kernel density, the ‘Silverman's rule-of-thumb’
(Silverman, 1986) was used to automatically determined the
bandwidth.

Intuitively, one can use other simpler methods instead of the
kernel density calculation, such as counting the number of facility
in a NC or within a buffering distance. However, these counting
methods could raise bias, as illustrated by Fig. 5. Assume that NC-A
has one facility (i), whereas B and C have zero. It seems that A is the
best because it has the highest number of facility. However, it is



Fig. 5. A special example to illustrate the weakness of the simple counting methods.
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more than likely that the influence of facility i is beyond the
boundaries of A. If facility i represents an enterprise located in A
(Fig. 5), for example, this enterprise can also offer job opportunities
to the neighboring NCs of B and C. In other words, the accessibility
of B and C to the work place is greater than zero, even though B and
C do not have any enterprise of their own. In this sense, facility i can
have an impact on the housing rent of the residential quarters
nearby, including those located in B and C. However, such an impact
cannot be revealed by the simple counting method, because it
implicitly assumes that facilities only provide services to residents
within the NC boundaries. Alternatively, one can generate the
buffers of NCs with a distance weight to give more relevance to
nearer facilities, and then aggregate the weighted number of fa-
cility count. This is another feasible approach to create POIs features
for NCs besides the averaging kernel density we used. Both of these
two approaches actually share the same idea tomeasure the facility
abundance at a location: calculating the total quantity of facility
within the neighborhood (e.g. the buffering area) weighted by the
(linear or non-linear) distance function. However, the operations of
these two approaches are different: the buffer approach directly
applies the calculation in the NC-level, whereas the averaging
kernel density approach obtain the pixel-level (local) facility
abundance first and average it at the NC-level later. That is, the
averaging kernel density approach indeed accounts the local het-
erogeneity of facility distribution in the calculation of NC-level fa-
cility abundance. Due to this characteristic and also the successful
applications in previous research (T. Hu et al., 2016; W. Wu et al.,
2013), we used the averaging kernel density approach to obtain
the NC-level abundance of the selected POIs types.
3. Methodology: ensemble learning

Ensemble learning is a collection of methods that trainsmultiple
classifiers/algorithms and combines their results to improve the
accuracy of classification or numeric prediction (Zhou, 2012).
Empirically, an ensemble classifier could perform better than a
single method for most of time, unless the individual classifiers
cannot provide sufficient diversity of generalization patterns
(Graczyk et al., 2010). In other words, the individual classifiers
should be accurate, and at the same time they should make errors
on different instances (Windeatt & Ardeshir, 2004).

There are several ways to ensemble multiple classifiers for
numeric prediction, such as training a single type of classifier/al-
gorithm by using different subsets of training data, or combining
different classifiers that have been already trained (Zhou, 2012).
The former ensemble approach is called bagging, which is short for
bootstrap aggregating. Bagging achieved the condition of diversity
by using bootstrap subsets randomly drawn (with replacement)
from the whole training data. Specifically, considering a full
training data set with n instances, a sample of them will be drawn
through bootstrap sampling. This sampling procedure can be
applied m times to generate m sets of training samples, in which
some original instances may exist in two or more training sample
sets because of the replacement scheme. Next, the individual
classifier is trained differently by using each of the drawn training
sample sets and eventually formm trained classifiers that may give
different predictions for the same input instance. To aggregate the
different predictions, the bagging method adopts the strategy of
voting for categorical classification problems or averaging for
numeric prediction problems. That is, in our case, after the training
procedure the baggingmethod averages the predicted rents fromm
trained classifiers as the final outputs. The bagging approach is
particularly useful for unstable classifiers that are highly sensitive
to even a small change of training conditions. This approach also
avoids the overfitting problem of unstable classifiers. Therefore,
bagging is usually applied to improve the performance of algo-
rithmswith tree structures, although also suitable for other types of
classifiers.

Another typical approach of ensemble learning is stacking,
which improves the prediction accuracy by combining multiple
classifiers of different types. In stacking, the involved individual
classifiers (i.e. base classifiers) are at the level-0, while the meta-
classifier to combine the individual classifiers is at the level-1. It
should be noted that the meta-classifier can also be one of the base
classifiers (Graczyk et al., 2010). The first step in stacking is to train
the level-0 classifiers separately by using the given training data
set. Then, a new data set is generated, in which the outputs of the
level-0 classifiers are regarded as features while the original true
classes/values are still treated as the true classes/values. Next, this
new data set is used to train the level-1 classifier for learning a
combination of predictions from level-0 classifiers and hence
achieving the improved prediction accuracy. More details of
bagging and stacking (including the pseudo codes) can be found in
(Zhou, 2012).

In this study, we selected six individual classifiers that have
been frequently used to solve numeric prediction problems. These
classifiers include Gaussian process regression (GPR), k-nearest
neighbor algorithm (k-NN), backpropagation neural networks (BP-
NN), radial basis function neural network (RBF-NN), fast decision-
tree (FDT) and support vector regression (SVR). These methods
have their own advantages and limitations. For example, k-NN as an
instance-based learning algorithm has the promising ability to
learn the complex interactions by using simple procedures of local
approximation, but is rather sensitive to the configuration of
parameter k and the choice of distance measures (X. Wu et al.,
2008). Therefore, it is expected that the ensemble of these classi-
fiers can reach an improved prediction accuracy. The open-source
machine learning platform WEKA (Waikato Environment for
Knowledge Analysis) (Srivastava, 2014) provides all of these clas-
sifiers and also the ensemble methods of bagging and stacking for
numeric prediction. We utilized WEKA to carry out the experi-
ments due to its convenience of data processing, implementation
and visualization. Specifically, each selected classifier was run and
validated separately to identify their individual performance in
terms of mean absolute error (MAE) and its percentage (%MAE),
and root mean squared error (RMSE) and its percentage (%RMSE):

MAE ¼ 1
n

X��ri;o � ri;p
�� (1)

%MAE ¼ 1
n

X��ri;o � ri;p
��

ri;o
(2)
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X�
ri;o � ri;p

�2r
(3)

%RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
P�

ri;o � ri;p
�2q

ro
(4)

where ri, o and ri, p are the observed and predicted mean unit rent
for ith NC; n is the total number of NC; ro is the observedmean unit
rent. The performance of the individual classifiers was evaluated
based on the approach of 10-fold cross validation, a standardway of
validation in machine learning. In the 10-fold cross validation,
training dataset is equally divided into 10 sets, with 9 of them being
the training data and the remaining set being the test data. Then
repeat this procedure by 10 times, with different test sets in each
time, and a mean accuracy/error is calculated as the final outputs of
validation for the model. After the evaluation of the individual
classifiers, the bagging approach was applied to each of them. The
stacking approach, however, can build several new classifiers based
on the possible combinations of the six individual classifiers.
Therefore, we ranked the individual classifiers according to their
performances and added them one by one into the stacking clas-
sifier, with the two most accurate classifiers to form Stacking #1
and so forth. Finally, the individual classifiers, the bagging classi-
fiers and five stacking classifiers were compared to identify the best
classifier for the estimation of unknown mean unit rent.
4. Results and discussions

4.1. Implementation and results

It has long been recognized that methods in machine learning
outperform traditional statistical methods, such as linear regres-
sion, in addressing the complexity of realistic datasets (Jerez et al.,
2010). Nevertheless, before the implementation of ensemble
learning, we carried out the linear regression analysis to explicitly
obtain the general relationships between the input variables and
the NC-level mean unit rent. As expected, the estimated coefficients
demonstrate the significant positive correlations between the input
variables and the mean unit rent (Table 2). The results indicate that
the nighttime lights can partly explain the variation of mean unit
rent. This is not surprised since nighttime lights have been widely
applied to the estimation of social-economic characteristics (Ma
et al., 2014) that are fundamental to the formation of housing
rent patterns. In addition, the positive coefficients of the kernel
densities of the selected POIs confirm that the abundance of facil-
ity/service supplies and local amenities can provide added values to
residential quarters. This is in line with the common experiences,
such as that residential quarters close to colleges (e.g. kHEdu) or
working places (e.g. kEnter) usually have higher level of housing
Table 2
Linear regression coefficients of the explanatory variables (Number of
observations ¼ 1028; F-statistics ¼ 218.43; R2 ¼ 0.63).

NTL ENDVI kEdu kHEdu kEnter

Coefficient 0.10** 16.18* 1.72* 1.18*** 11.59***
t-statistics 2.76 2.03 2.04 4.21 9.10

kCom kHosp kMetro Constant

Coefficient 0.39*** 3.71* 3.19*** 16.83***
t-statistics 1.92 1.99 10.40 11.8

MAE ¼ 6.28, %MAE ¼ 19.63%, RMSE ¼ 8.05, %RMSE ¼ 21.61%

Note: *p < 0.05, **p < 0.01, ***p < 0.001.
rents (Gibbons & Machin, 2008), but in turn they provide social-
cultural amenities and also better accessibility from the perspec-
tive of daily commuting. The assessed errors of this regression
model are shown in Table 2 (%MAE ¼ 19.63% and %RMSE ¼ 21.61%).

The performance of the six individual classifiers was also eval-
uated before the implementation of ensemble (Table 3 and Fig. 6).
The parameter configuration files of these classifiers in WEKA
format are provided in Appendix A. The results indicate that their
performance is generally good, with the MAE ranging from 5.29 to
5.68 (%MAE ¼ [16.40e17.66%]) and the RMSE from 6.98 to 7.43 (%
RMSE ¼ [18.75e19.96%]). Among these classifiers, SVR, k-NN and
GPR have similar prediction errors of %MAE z 16.69% and %
RMSE z 18.82%, which are lower than those for BP-NN, RBF-NN
and FDT (%MAE z 17.62% and %RMSE z 19.53%). Due to the
insensitivity to the number of dimensions, SVR has been reported
to be the most robust and accurate method than others in machine
learning (X. Wu et al., 2008). Previous studies also revealed that k-
NN as a kind of lazy learning method also has satisfactory perfor-
mance if the training datasets are reliable (Kuramochi & Karypis,
2005). Thus, it is not surprising that SVR and k-NN are among the
best individual classifiers in our preliminary experiments.

The ensemble approach of bagging was applied to each of the
individual classifiers with the default parameter settings of WEKA
for bagging (Appendix A), in which the sampling procedures are
applied 10 times. The individual classifiers after bagging are
denoted as B_GPR, B_k-NN, B_BP-NN, B_RBF-NN, B_FDT and B_SVR,
respectively. The results shown in Table 4 reflect that the effec-
tiveness of bagging varies from one individual classifier to another.
B_RBF-NN (MAE ¼ 5.55) and B_FDT (MAE ¼ 5.49) gain the largest
improvements in the prediction errors by comparing with their
performance before bagging (5.68 and 5.62, respectively). B_BP-NN
also achieved better outcomes than BP-NN, although the
improvement is quite trivial (with reduced %MAE from 17.58% to
17.52%). These experimental results, which are consistent to the
empirical findings in previous studies (Kim & Kang, 2010), suggest
that the bagging approach is particularly effective for improving
classifiers with neural networks or tree structures. However,
compared with the performance of SVR, k-NN and GPR, their
bagging forms (i.e. B_SVR, B_GPR and B_k-NN) cannot achieve any
improvement but have even larger errors. Nevertheless, these three
bagging classifiers still outperform B_RBF-NN, B_FDT and B_BP-NN.
In summary, the experiments with our dataset of mean unit rent
have demonstrated that the bagging approach can narrow down
the gap of prediction errors between the ‘good’ classifiers and the
‘bad’ ones, but eventually it doesn't improve too much the perfor-
mance of the ‘good’ classifiers. Therefore, we resorted to another
ensemble approach of stacking (please see Appendix A for the
parameter configurations of stacking).

Because we have six individual classifiers, there are five com-
binations of them to form the stacking classifiers. Therefore, we
first ranked the individual classifiers according to their MAE in
ascending order, i.e. SVR < GPR < k-NN < BP-NN < FDT < RBF-NN.
Then we grouped them into five combinations:

Stacking #1: SVR þ GPR;
Stacking #2: SVR þ GPR þ k-NN;
Stacking #3: SVR þ GPR þ k-NN þ BP-NN;
Table 3
Prediction errors of the individual classifiers.

GPR k-NN BP-NN RBF-NN FDT SVR

MAE 5.33 5.35 5.56 5.68 5.62 5.29
%MAE 16.76% 16.91% 17.58% 17.66% 17.62% 16.40%
RMSE 6.98 6.99 7.12 7.43 7.26 7.04
%RMSE 18.75% 18.78% 19.12% 19.96% 19.50% 18.92%



Fig. 6. Actual mean unit rent vs. predicted mean unit rent by individual classifiers of (a) Linear regression, (b) GPR, (c) k-NN, (d) BP-NN, (e) RBF-NN, (f) FDT, (g) SVR and (h) Stacking
#2.
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Stacking #4: SVR þ GPR þ k-NN þ BP-NN þ FDT; and
Stacking #5: SVR þ GPR þ k-NN þ BP-NN þ FDT þ RBF-NN.
We also conducted multiple experiments to identify the best

meta-classifier, and eventually we found that SVR as the meta-
classifier ensured the most accurate results. Therefore, SVR was
used as the meta-classifier for Stacking #1 to #5. The prediction
errors of the five stacking classifiers are shown in Table 5. It can be
found that by combing SVR and GPR (Stacking #1), the predictions
errors (MAE ¼ 5.26 and RMSE ¼ 6.99) have already reduced to be
less than those for either of the two input classifiers (Table 3). With



Table 4
Prediction errors of the bagging classifiers.

B_GPR B_k-NN B_BP-NN B_RBF-NN B_FDT B_SVR

MAE 5.33 5.40 5.56 5.55 5.49 5.31
%MAE 16.77% 16.92% 17.52% 17.25% 17.23% 16.51%
RMSE 6.98 7.06 7.13 7.27 7.11 7.03
%RMSE 18.76% 18.97% 19.54% 19.54% 19.11% 18.87%

Table 5
Prediction errors of the stacking classifiers (meta-classifier ¼ SVR).

Stacking #1 Stacking #2 Stacking #3 Stacking #4 Stacking #5

MAE 5.26 5.25 5.27 5.29 5.27
%MAE 16.32% 16.32% 16.32% 16.38% 16.34%
RMSE 6.99 6.96 6.96 6.98 6.96
%RMSE 18.77% 18.69% 18.70% 18.76% 18.70%

Table 6
MAE differences between Stacking #2 (the control classifier) and the remaining
ensemble classifiers (the ranks are shown in the parentheses).

N B_GPR B_k-NN B_BP-NN B_RBF-NN B_FDT

1 �0.0665 (3) �0.1351 (3) �0.3000 (2) �0.2867 (4) �0.2266 (3)
2 �0.0655 (2) �0.1246 (2) �0.2951 (1) �0.2804 (2) �0.2344 (4)
3 �0.1664 (5) �0.1825 (5) �0.3152 (4) �0.3055 (5) �0.2641 (5)
4 �0.0483 (1) �0.1405 (4) �0.3197 (5) �0.2346 (1) �0.2172 (2)
5 �0.0742 (4) �0.1194 (1) �0.3034 (3) �0.2853 (3) �0.2064 (1)
Rþ 0 0 0 0 0
R- 15 15 15 15 15

N B_SVR Stacking #1 Stacking #3 Stacking #4 Stacking #5

1 �0.0412 (3) 0.0102 (2) �0.0020 (1) �0.0269 (2) �0.0068 (1)
2 �0.0380 (2) �0.0112 (3) �0.0514 (3) �0.0682 (3) 0.0122 (3)
3 �0.1323 (5) �0.0629 (5) �0.0810 (4) �0.0981 (5) �0.1112 (5)
4 �0.0344 (1) �0.0255 (4) �0.0865 (5) �0.0929 (4) �0.0706 (4)
5 �0.0602 (4) 0.0096 (1) �0.0184 (2) �0.0105 (1) 0.0074 (2)
Rþ 0 3 0 0 5
R- 15 12 15 15 10
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an extra classifier added, i.e. the k-NN, the MAE of Stacking #2
decreases into 5.25. However, the performance could not be
improved but become worse after including BP-NN and FDT into
the stacking classifier (Stacking #3 and #4). The prediction errors of
Stacking #5 (MAE ¼ 5.27 and RMSE ¼ 6.96), which is the ensemble
of all individual classifiers, are approximately equal to those of
Stacking #3 but higher than the errors of Stacking #1. Overall,
Stacking #2 has the best performance among all stacking classifiers.
The ensemble approach of stacking also outperforms all individual
classifiers and the bagging classifiers in terms of the prediction
errors (Tables 3 and 4).

We employed the Wilcoxon signed ranks test (Dem�sar, 2006) to
further assess the significance of the differences between Stacking
#2, which is selected as the control classifier (i.e. the best one), and
the remaining ensemble (bagging and stacking) classifiers. The
Wilcoxon signed ranks test is a non-parametric test that ranks the
performance differences between two classifiers. Given N data sets,
let di be the performance difference (e.g. MAE) between two clas-
sifiers on data set i. All of the differences are ranked by their ab-
solute values, in which a lower rank is assigned to the smaller
absolute difference. Average ranks are assigned if equal absolute
values exist. These ranks are summed up separately according to
the signs of the differences:

Rþ ¼
X
di >0

rankðdiÞ þ
1
2

X
di¼0

rankðdiÞ (5)

R� ¼
X
di <0

rankðdiÞ þ
1
2

X
di¼0

rankðdiÞ (6)

where Rþ and R� represent the sum of ranks for non-negative and
non-positive differences, respectively. Let T ¼ min(Rþ, R�). With a
given confidence level (e.g. a ¼ 0.05), if T is smaller than or equal
the critical value, the null hypothesis that two classifiers perform
equally well can be rejected. The critical values for different values
of N and confidence levels are provided in (Dem�sar, 2006). We ran
each of the ensemble classifiers five times (N ¼ 5) on the housing
rent data set, and derived the differences in terms of MAE between
Stacking #2 and the remaining classifiers. The results and their
ranks are shown in Table 6. For Stacking #2, Rþ is always less than
R� (i.e. T ¼ Rþ), and also satisfies the condition of equal or less than
the critical value of 5 (N ¼ 5, a ¼ 0.05; see (Dem�sar, 2006)).
Therefore, it is evident that Stacking #2 significantly outperforms
all of the other ensemble classifiers compared, and can be used to
estimate the unknown mean unit rent.

Fig. 7(a) shows the composite of the original and the estimated
mean unit rent at the NC-level. Based on these results, the spatial
characteristics of housing rent in metropolitan Guangzhou can be
revealed. By visually inspecting Fig. 7(a), it is evident that the mean
unit rent is the highest in the central area of the city and gradually
declines toward the outskirts. To quantify this pattern, we used a
power function to estimate the relationship between distance from
the city center and the NC-level mean unit rent. In this estimation,
for NCs that already have observations of housing rent data, we
directly used them as the inputs. For the NCs with unknown rents,
we used the estimated rents as the inputs. Therefore, rather than a
limited number of samples, all NCs were accounted in the estima-
tion. As illustrated by Fig. 7(c), the estimated exponent is �0.327,
which indicates a strong distance decay effect. This is in line with
our own experiences about this city and the findings in previous
research as well. That is, the city has formed a matured core (i.e. the
CBD) at the macro scale (Shin, 2014). In this sense, the housing rent
map we produced is reliable.
4.2. Discussions

There are several implications that can be drawn from the re-
sults discussed above. Firstly, our experiments have demonstrated
the usefulness of the online rental listings and other auxiliary data
(e.g. nighttime lights and POIs) for mapping housing rent at a
relatively fine-scale (i.e. the NC-level). All of these data sets share
two promising advantages: (1) they are generally open access,
including the housing rent data and POIs, and hence one can collect
these data for related analysis by implementing the web-crawlers;
(2) the online rental listings are usually updated at much finer
temporal interval than conventional statistical housing data. While
the explanatory variables of nighttime lights and POIs are also
regularly updated, one can easily capture the spatial-temporal
variations of housing rent annually, monthly or even weekly.
Although in this study only the year 2015 data are assembled to
produce the spatial pattern of housing rent, the time-series map-
ping of housing rent, which enables the long-term monitoring and
analysis of local residential markets, can be anticipated if the
continuous collection of corresponding data sets is achieved.

Secondly, we demonstrate the utility of ensemble learning
methods in the production of spatial housing data. The results
reflect that ensemble learning can effectively reduce the overall
prediction errors. However, the actual performance of ensemble
learning could be significantly affected by the original individual
classifier. In this study, the selected individual classifiers are the
most well-known ones, which have already been applied in a vast



Fig. 7. (a) The estimated mean unit rent at the NC-level. (b) Distance decay in the NC-level mean unit rents.
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number of situations (Graczyk et al., 2010; Srivastava, 2014).
Therefore, the effectiveness of ensemble learning can be examined
more clearly for these representative individual classifiers.
Consistent with the findings in previous research (Wang, Hao, Ma,
& Jiang, 2011), the ensemble learning approach of bagging in our
case works better for algorithms based on neural networks and tree
structures. Even so, the predictions made by the bagging neural
networks and tree structure based algorithms are still less accurate
than those from support vector regression. Another important
lesson learned from the experiments is that ensemble learning by
combining some classifiers might work better than combining
them all. This is evident in the stacking experiments, in which the
best model is the combination of SVR, GPR and k-NN (Stacking #2)
rather than all of the six classifiers (Stacking #3, #4 and #5).
Therefore, despite the better performance of the stacking approach,
one should be cautious to bring in the individual classifiers instead
of pooling all the classifiers at hand.

Besides the housing research, machine learning methods and
their ensemble forms also have promising potential to solve other
problems in social sciences and human geography, such as land use
legacies (Tayyebi, Pijanowski,& Pekin, 2015), public health research
(Grubesic, Miller, & Murray, 2014) and demographic mapping
(Grekousis & Thomas, 2012). Indeed, machine learning methods
are particularly useful for social sciences and human geography, in
which complex relationships exist and cannot be easily captured by
traditional analytical methods. Machine learning methods are not
only applicable in cases with available complete data sets, but also
adaptive to problems with incomplete data sets. Traditionally re-
searchers adopt the statistical techniques of small area estimation
and missing value imputation methods to address the missing data
problems that frequently occur in demographic research. However,
recent studies of Jerez et al. (2010) and Nelwamondo, Golding, and
Marwala (2013) consistently report the better performance of
machine learning methods (e.g. k-NN, neural network and decision
trees) over the traditional statistical techniques for missing data
imputation. However, despite the advantage, interpreting the re-
sults of machine learning methods might be difficult (e.g. the
neural network as ‘black box’), because these methods make
predictions/classifications purely based on the interactions of data
(Jerez et al., 2010). Therefore, it should be cautious to apply ma-
chine learning methods if the objective is to mimic the mechanism
and causality of social phenomena.

Thirdly, in a broader context, our results can contribute to the
understanding of urban residential dynamics, especially for the
Chinese cities. For instance, the recent rush-up in Chinese cities'
housing prices has raised the concern of ‘housing bubbles’, which
refers to the excessive deviation of housing price from the funda-
mental housing values (Hou, 2010). In this sense, the resulting
spatial distributions of housing rent in our work can be served as an
input variable to calculate the price-to-rent ratio, which is
frequently used along with other factors (e.g. income and financial
conditions) to measure the likelihood of ‘housing bubbles’. More-
over, as the generated mean unit rent are at the NC-level, i.e. the
very basic level of administrative divisions, they are compatible
with other socioeconomic statistics in the mainstream data sources
(e.g. population census). This advantage can facilitate the research
of social problems related to residential conditions, including
housing affordability (J. Chen et al., 2010), urban poverty (He et al.,
2010) and residential segregation (Z. Li & Wu, 2008). Finally,
housing rent is also an important variable to measure the land
value for residential uses. While a typical mode of urban expansion
in contemporary China is the rapid development of real estates (S.
Hu et al., 2012), the mapping of housing rent can provide valuable
information to indicate the orientation as well as the potential re-
turn of future growth.

5. Conclusions

In this study, we have explored the utility of online rental list-
ings for mapping the spatial pattern of housing rent in the metro-
politan Guangzhou. It is expected that our estimation of the NC-
level housing rent pattern can be integrated with other informa-
tion to provide better understanding of urban residential dynamics
and related problems. To this end, we established a prediction
model based on ensemble learning using the input variables of
VIIRS nighttime lights, NDVI and several types of POIs. The
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experimental results indicate that the ensemble approach of
bagging can effectively reduce the prediction errors of classifiers
with neural networks or tree structures (e.g. RBF-NN and FDT),
whereas the stacking approach produces ensemble classifiers with
much better performance than the bagging classifiers. As a result,
we chose Stacking #2, the classifier with the lowest errors (%
MAE ¼ 16.32% and %RMSE ¼ 18.69%), to estimate the mean unit
rent at the NC-level. Based on the mapping results, we identified a
significant distance decay relationship in the NC-level mean unit
rents with respect to the city center. This reveals that the city has a
matured core (i.e. the CBD) at the macro scale. Although the
established ensemble model can effectively improve the prediction
accuracy of housing rent, the performance can be further refined by
introducing variables of social characteristics, such as household
incomes and financial conditions. Moreover, the presented method
can also be applied in a finer scale if extra spatial data are available.
We have explained in Section 2 that the choice of the NC-level for
mapping the housing rent is a compromising decision due to the
absence of the spatial footprints of residential quarters. Therefore,
we will seek to acquire more useful data in the future so that the
spatial pattern of urban housing rent can be delineated with an
even finer resolution.
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